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2D Robot World

9/26/2017 2

• World with landmarks
• Landmarks are unique and numbered
• Each landmark 𝑙𝑙𝑘𝑘 is denoted by,

𝑙𝑙𝑘𝑘 =
𝑙𝑙𝑘𝑘,𝑥𝑥
𝑙𝑙𝑘𝑘,𝑦𝑦

X

Y
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Robot Start 
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Robot Starts here
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Robot Start
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Robot Odometry says this is origin
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Robot State
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Robot State is given by,

𝒙𝒙 =
𝑥𝑥
𝑦𝑦
𝜃𝜃

Because this varies with respect to time, 
We will write the state as,

𝒙𝒙𝒕𝒕 =
𝑥𝑥𝑡𝑡
𝑦𝑦𝑡𝑡
𝜃𝜃𝑡𝑡

=
𝑥𝑥
𝑦𝑦
𝜃𝜃 𝑡𝑡

X

Y

𝜃𝜃
𝒙𝒙𝒕𝒕
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Sensor
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Robot has a Wide FOV Camera/Lidar of 120°

𝜃𝜃
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Measurement Model
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Measurement Model
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• At 𝒙𝒙𝒕𝒕 the robot observes 𝑙𝑙𝑘𝑘 landmarks where 𝑘𝑘 denotes 
individual landmark IDs

• Sensor is not perfect hence you see the landmark with a 
probability of 𝑝𝑝𝑜𝑜𝑜𝑜𝑜𝑜 = 0.95

• The measurement at time 𝑡𝑡 with respect to landmark 𝑙𝑙𝑘𝑘
obtained by the robot is given by

𝑚𝑚𝑡𝑡,𝑘𝑘 =
𝑚𝑚𝑡𝑡,𝑘𝑘,𝑥𝑥
𝑚𝑚𝑡𝑡,𝑘𝑘,𝑦𝑦

• 𝑚𝑚𝑡𝑡,𝑘𝑘 is noisy and can be thought of as drawn from 
𝒩𝒩( �𝑚𝑚𝑡𝑡,𝑘𝑘 ,Σ𝑚𝑚)

Missed landmark

x

o
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Robot at 𝑡𝑡 = 1
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• Odometry is denoted by 𝑜𝑜𝑡𝑡𝑡𝑡+1 between times 𝑡𝑡 and 
𝑡𝑡 + 1

• It is obtained by some wheel encoder and can be 
thought of as drawn from 𝒩𝒩(�𝑜𝑜𝑡𝑡𝑡𝑡+1 ,Σ𝑜𝑜)
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For multiple steps
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SLAM Problem
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𝑥𝑥0 =
−10
−10
𝜋𝜋
2

Given Initial pose 𝑥𝑥1 , odometry 𝑜𝑜𝑡𝑡𝑡𝑡+1 and landmark
measurements𝑚𝑚𝑡𝑡,𝑘𝑘
Obtain landmark locations 𝑙𝑙𝑘𝑘 and robot pose 𝑥𝑥𝑡𝑡
SLAM stands for “Simultaneous Localization and Mapping”
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SLAM as a Bayes Net
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SLAM as a Bayes Net: Graph
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𝑥𝑥0 𝑥𝑥1 𝑥𝑥2 𝑥𝑥3

𝑚𝑚1 𝑚𝑚2 𝑚𝑚3 𝑚𝑚4 𝑚𝑚5 𝑚𝑚6

𝑙𝑙7 𝑙𝑙16 𝑙𝑙78 𝑙𝑙71 𝑙𝑙82
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SLAM as a Bayes Net: Math
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Motion Model:

𝑥𝑥𝑡𝑡 = 𝑓𝑓𝑡𝑡 𝑥𝑥𝑡𝑡−1,𝑢𝑢𝑡𝑡 + 𝑤𝑤𝑖𝑖 ⇔ 𝑃𝑃 𝑥𝑥𝑡𝑡 𝑥𝑥𝑡𝑡−1,𝑢𝑢𝑡𝑡 ∝ e−
1
2 𝑓𝑓𝑡𝑡 𝑥𝑥𝑡𝑡−1,𝑢𝑢𝑡𝑡 −𝑥𝑥𝑡𝑡 Λt

2

Measurement Model:

𝑚𝑚𝑖𝑖 = ℎ𝑖𝑖 𝑥𝑥𝑡𝑡,𝑖𝑖 , 𝑙𝑙𝑘𝑘,𝑖𝑖 + 𝑣𝑣𝑖𝑖 ⇔ 𝑃𝑃 𝑚𝑚𝑖𝑖 𝑥𝑥𝑡𝑡,𝑖𝑖 , 𝑙𝑙𝑘𝑘,𝑖𝑖 ∝ e
−12 ℎ𝑖𝑖 𝑥𝑥𝑡𝑡,𝑖𝑖,𝑙𝑙𝑘𝑘,𝑖𝑖 −𝑚𝑚𝑖𝑖 Σ𝑖𝑖

2

MAP to maximize:

𝑃𝑃 𝑋𝑋,𝐿𝐿,𝑀𝑀 = 𝑃𝑃 𝑥𝑥0 �
𝑡𝑡=1

𝑇𝑇

𝑃𝑃 𝑥𝑥𝑡𝑡 𝑥𝑥𝑡𝑡−1,𝑢𝑢𝑡𝑡 �
𝑖𝑖=1

𝑀𝑀

𝑃𝑃 𝑚𝑚𝑖𝑖 𝑥𝑥𝑡𝑡,𝑖𝑖 , 𝑙𝑙𝑘𝑘,𝑖𝑖
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SLAM as a Factor Graph: Graph
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𝑥𝑥0 𝑥𝑥1 𝑥𝑥2 𝑥𝑥3

𝑙𝑙7 𝑙𝑙16 𝑙𝑙78 𝑙𝑙71 𝑙𝑙82
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SLAM as a Factor Graph: Math
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Prior:

𝜙𝜙0 𝑥𝑥0 ∝ 𝑃𝑃 𝑥𝑥0
Motion Model:

𝜓𝜓𝑡𝑡−1,𝑡𝑡 𝑥𝑥𝑡𝑡−1,𝑥𝑥𝑡𝑡 ∝ 𝑃𝑃 𝑥𝑥𝑡𝑡 𝑥𝑥𝑡𝑡−1,𝑢𝑢𝑡𝑡
Measurement Model:

𝜓𝜓𝑡𝑡,𝑘𝑘 𝑥𝑥𝑡𝑡 , 𝑙𝑙𝑘𝑘 ∝ 𝑃𝑃 𝑚𝑚𝑡𝑡,𝑘𝑘 𝑥𝑥𝑡𝑡 , 𝑙𝑙𝑘𝑘
Value of the graph to maximize:

𝑃𝑃 Θ ∝ �
𝑡𝑡=0

𝑇𝑇

𝜙𝜙𝑡𝑡 𝜃𝜃𝑡𝑡 �
𝑖𝑖,𝑗𝑗 ,𝑖𝑖<𝑗𝑗

𝜓𝜓𝑖𝑖𝑗𝑗 𝜃𝜃𝑖𝑖 ,𝜃𝜃𝑗𝑗

Θ ≜ (𝑋𝑋, 𝐿𝐿)
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SLAM as Non-Linear Least Squares
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• Maximum A Posteriori (MAP) estimation

𝑓𝑓 Θ = �
𝑖𝑖

𝑓𝑓𝑖𝑖(Θ𝑖𝑖) ,Θ ≜ 𝑋𝑋, 𝐿𝐿 ∀ 𝑓𝑓𝑖𝑖 Θ𝑖𝑖 ∝ e−
1
2 ℎ𝑖𝑖 Θ𝑖𝑖 −𝑚𝑚𝑖𝑖 Σ𝑖𝑖

2

Θ∗ = argmax
Θ

𝑓𝑓 Θ

• Negative Log Likelihood (NLL)

argmin
Θ

−log 𝑓𝑓(Θ) = argmin
Θ

1
2
�
𝑖𝑖

ℎ𝑖𝑖 Θ𝑖𝑖 − 𝑚𝑚𝑖𝑖 Σ𝑖𝑖
2
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Numerical Optimization 101
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𝑥𝑥∗

Convex function

𝑓𝑓(𝑥𝑥)

𝑥𝑥∗ = argmin
𝑥𝑥

𝑓𝑓(𝑥𝑥)
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Convex Function
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𝑥𝑥∗

Convex function

𝑓𝑓(𝑥𝑥)

𝑥𝑥1, 𝑓𝑓(𝑥𝑥1)
𝑥𝑥2, 𝑓𝑓(𝑥𝑥2)

𝑡𝑡𝑥𝑥1 + 1 − 𝑡𝑡 𝑥𝑥2,𝑓𝑓(𝑡𝑡𝑥𝑥1 + 1 − 𝑡𝑡 𝑥𝑥2) , 𝑡𝑡 ∈ [0,1]

Known as “Jensen’s Inequality”
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Concave Function
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𝑥𝑥∗

Concave function

𝑥𝑥∗ = argmax
𝑥𝑥

𝑓𝑓(𝑥𝑥)

Intuitively:
Concave = −Convex or vice versa
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Non-Convex Function
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𝑓𝑓(𝑥𝑥)

𝑥𝑥∗

𝑥𝑥𝑙𝑙∗

𝑥𝑥𝑙𝑙∗
𝑥𝑥𝑙𝑙∗ 𝑥𝑥𝑙𝑙∗

Non-convex function

Neither convex nor concave
Intuitively has a lot of local optimum
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Convex Optimization 101

9/26/2017 22

𝑥𝑥∗

Convex function

𝑓𝑓(𝑥𝑥) Gradient Direction is the direction of steepest descent

Negative Gradient 
points to optimum 
direction

Gradient

Iso-contours of 𝑓𝑓(𝑥𝑥)
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Steepest Descent
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𝑥𝑥𝑡𝑡+1 = 𝑥𝑥𝑡𝑡 − 𝜏𝜏𝛻𝛻𝑓𝑓 𝑥𝑥𝑡𝑡
𝜏𝜏 is called the step-size
𝛻𝛻𝑓𝑓(𝑥𝑥) is the local gradient at 𝑥𝑥

Negative Gradient 
points to optimum 
direction

Gradient

Iso-contours of 𝑓𝑓(𝑥𝑥)

𝑥𝑥0

𝑥𝑥∗
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Step-size Restrictions
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𝜏𝜏 < 2
𝛼𝛼

for 𝑓𝑓 𝑥𝑥 = 𝛼𝛼
2
𝑥𝑥2

𝛻𝛻𝑓𝑓 𝑥𝑥 = 𝛼𝛼𝑥𝑥

𝑥𝑥𝑡𝑡+1 = 𝑥𝑥𝑡𝑡 − 𝜏𝜏𝛼𝛼𝑥𝑥𝑡𝑡

Sort of like PD controller

Too high 𝜏𝜏 will cause you to diverge

Too low 𝜏𝜏 will take forever to converge 𝑥𝑥∗

Convex function

𝑓𝑓(𝑥𝑥)

𝑥𝑥𝑡𝑡 𝜏𝜏 =
2
𝛼𝛼

𝜏𝜏 =
1
𝛼𝛼



z

Lipschitz Constant
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𝛻𝛻𝑓𝑓 𝑥𝑥 − 𝛻𝛻𝑓𝑓 𝑦𝑦 ≤ 𝑀𝑀‖𝑥𝑥 − 𝑦𝑦‖

Here 𝑀𝑀 is the Lipschitz constant or intuitively 𝑀𝑀 represents a function of maximum curvature

If a Hessian exists: 𝑀𝑀 ≥ 𝛻𝛻2𝑓𝑓 𝑥𝑥

The step-size restriction becomes

𝜏𝜏 <
2
𝑀𝑀

It is generally hard to obtain a value of 𝑀𝑀

There are methods to find “best” 𝜏𝜏 for each step and are called Line Search Methods
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Recall Condition Number
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𝜅𝜅 denotes how sensitive the function is to noise or in 
other words how circular are the iso-contours
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The “Best” Pre-conditioner
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argmin
𝑥𝑥

𝑓𝑓(𝑥𝑥) argmin
𝑦𝑦

𝑓𝑓(𝐏𝐏𝑦𝑦)𝑥𝑥 = 𝐏𝐏𝑦𝑦

Hessians𝐇𝐇 𝐏𝐏𝐓𝐓𝐇𝐇𝐏𝐏

When 𝐏𝐏 = 𝐇𝐇−𝟏𝟏𝟐𝟐,𝐏𝐏𝐓𝐓𝐇𝐇𝐏𝐏 = 𝐇𝐇−𝟏𝟏𝟐𝟐𝐇𝐇𝐇𝐇−𝟏𝟏𝟐𝟐 = 𝐈𝐈

𝑃𝑃
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Newton’s Method
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argmin
𝑥𝑥

𝑓𝑓(𝑥𝑥) argmin
𝑦𝑦

𝑓𝑓 𝐇𝐇−12𝑦𝑦
𝑥𝑥 = 𝐇𝐇−12𝑦𝑦

Gradient Step becomes 𝑦𝑦𝑘𝑘+1 = 𝑦𝑦𝑘𝑘 − 𝐇𝐇−12𝛻𝛻𝑓𝑓 𝐇𝐇−12𝑦𝑦𝑘𝑘

Changing back variables to 𝑥𝑥 we get 

𝑥𝑥𝑡𝑡+1 = 𝑥𝑥𝑡𝑡 − 𝐇𝐇−1𝛻𝛻𝑓𝑓(𝑥𝑥𝑡𝑡)

−𝐇𝐇−1𝛻𝛻𝑓𝑓(𝑥𝑥𝑡𝑡) is called the Newton direction
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Gauss Newton Method
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Modification of Newton’s method to find minimum of a sum of squared function values
Let the function we are minimizing be 

𝐹𝐹 𝑥𝑥 =
1
2
�
𝑖𝑖=1

𝑚𝑚

𝑓𝑓𝑖𝑖 𝑥𝑥 2 =
1
2

𝑓𝑓 𝑥𝑥 2 =
1
2
𝑓𝑓 𝑥𝑥 𝑇𝑇𝑓𝑓 𝑥𝑥

Our problem setup is as follows: argmin
𝑥𝑥

𝐹𝐹(𝑥𝑥)

The gradient vector 𝑔𝑔 is obtained as follows, 

𝑔𝑔𝑗𝑗 = �
𝑖𝑖=1

𝑚𝑚

𝑓𝑓𝑖𝑖
𝜕𝜕𝑓𝑓𝑖𝑖
𝜕𝜕𝑥𝑥𝑗𝑗

To obtain the Hessian we need to differentiate the gradient elements with respect to 𝑥𝑥𝑘𝑘

𝐻𝐻𝑗𝑗𝑘𝑘 = �
𝑖𝑖=1

𝑚𝑚
𝜕𝜕𝑓𝑓𝑖𝑖
𝜕𝜕𝑥𝑥𝑗𝑗

𝜕𝜕𝑓𝑓𝑖𝑖
𝜕𝜕𝑥𝑥𝑘𝑘

+ 𝑓𝑓𝑖𝑖
𝜕𝜕2𝑓𝑓𝑖𝑖
𝜕𝜕𝑥𝑥𝑗𝑗𝜕𝜕𝑥𝑥𝑘𝑘
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Gauss Newton Method
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𝐻𝐻𝑗𝑗𝑘𝑘 = �
𝑖𝑖=1

𝑚𝑚
𝜕𝜕𝑓𝑓𝑖𝑖
𝜕𝜕𝑥𝑥𝑗𝑗

𝜕𝜕𝑓𝑓𝑖𝑖
𝜕𝜕𝑥𝑥𝑘𝑘

+ 𝑓𝑓𝑖𝑖
𝜕𝜕2𝑓𝑓𝑖𝑖

𝜕𝜕𝑥𝑥𝑗𝑗𝜕𝜕𝑥𝑥𝑘𝑘
Now, ignore all the second-order derivative terms (second term) in the above expression

𝐻𝐻𝑗𝑗𝑘𝑘 ≈�
𝑖𝑖=1

𝑚𝑚

𝐽𝐽𝑖𝑖𝑗𝑗𝐽𝐽𝑖𝑖𝑘𝑘

Where 𝐽𝐽𝑖𝑖𝑗𝑗 = 𝜕𝜕𝑓𝑓𝑖𝑖
𝜕𝜕𝑥𝑥𝑗𝑗

are the components of the Jacobian Matrix 𝐉𝐉

Now, 𝑔𝑔 = 𝐉𝐉𝑇𝑇𝑓𝑓 and 𝐇𝐇 ≈ 𝐉𝐉𝑇𝑇𝐉𝐉
The update equations for Gauss Newton method become

𝑥𝑥𝑡𝑡+1 = 𝑥𝑥𝑡𝑡 − 𝐉𝐉𝑇𝑇𝐉𝐉 −1𝐉𝐉𝑇𝑇𝑓𝑓
Why is this better than Newton’s Method with the update rule 𝑥𝑥𝑡𝑡+1 = 𝑥𝑥𝑡𝑡 − 𝐇𝐇−1𝛻𝛻𝑓𝑓 𝑥𝑥𝑡𝑡 = 𝑥𝑥𝑡𝑡 − 𝐇𝐇−1𝐉𝐉𝑇𝑇𝑓𝑓
Complicated Hessian computation is avoided
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Levenberg–Marquardt (LM) Method
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Also called “Damped Least Squares”
The update rule is

𝑥𝑥𝑡𝑡+1 = 𝑥𝑥𝑡𝑡 − �𝐇𝐇−1𝛻𝛻𝑓𝑓 𝑥𝑥𝑡𝑡
Here �𝐇𝐇 is modified Hessian

�𝐇𝐇 = 𝑯𝑯 + 𝜆𝜆diag 𝐇𝐇
LM method blends the Steepest Descent method and Newton’s method
Recall steepest descent method update rule is

𝑥𝑥𝑡𝑡+1 = 𝑥𝑥𝑡𝑡 − 𝜏𝜏𝛻𝛻𝑓𝑓 𝑥𝑥𝑡𝑡
And Newton’s method update rule is

𝑥𝑥𝑡𝑡+1 = 𝑥𝑥𝑡𝑡 − 𝐇𝐇−1𝛻𝛻𝑓𝑓 𝑥𝑥𝑡𝑡
• Steepest descent works well when we are far from minima and Newton’s method which assumes local 

quadratic approximation works well near the minima as the quadratic approximation is good
• In the LM update rule when 𝜆𝜆 gets small the rule approaches Newton’s method and when 𝜆𝜆 is large LM 

approaches steepest descent
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Dogleg Method
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Chooses between steepest descent (Cauchy) step and Gauss-Newton step

Let ℎ = 𝑥𝑥𝑡𝑡+1 − 𝑥𝑥𝑡𝑡 be the update rule such that 𝑥𝑥𝑡𝑡+1 = 𝑥𝑥𝑡𝑡 + ℎ

Cauchy step is given by ℎ𝐶𝐶 = −𝜏𝜏𝐉𝐉𝑇𝑇𝑓𝑓

Gauss-Newton step is given by ℎ𝐺𝐺𝐺𝐺 = − 𝐉𝐉𝑇𝑇𝐉𝐉 −1𝐉𝐉𝑇𝑇𝑓𝑓

Dogleg uses a region of trust Δ around the linearization point to choose between Cauchy and GN 

steps

ℎ𝑑𝑑𝑙𝑙 = ℎ𝐶𝐶 + 𝜆𝜆 𝑑𝑑𝐺𝐺𝐺𝐺 − 𝑑𝑑𝐶𝐶
Here 𝜆𝜆 ∈ 0,1 is the largest value in such that ℎ𝑑𝑑𝑙𝑙 ≤ Δ

If 𝐉𝐉 is nearly singular then ℎ𝑑𝑑𝑙𝑙 = ℎ𝐶𝐶
Update rule is: 𝑥𝑥𝑡𝑡+1 = 𝑥𝑥𝑡𝑡 + ℎ𝑑𝑑𝑙𝑙
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Ordering
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• Selecting the correct column ordering 
matters since it decides the sparsity of 
information matrix

• Use COLAMD to find the best ordering 
just based on information matrix

• COLAMD stands for “COLumn
Approximate Minimum Degree 
permutation”

Original Data

Original Data LU

COLAMD Data

COLAMD Data LU

Sparsity patterns
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• Frank Dallert’s Hands-On GTSAM Tutorial: 

https://research.cc.gatech.edu/borg/sites/edu.borg/files/downloads/gtsam.pdf
• Tom Goldstein’s amazing optimization slides: 

https://www.cs.umd.edu/~tomg/course/764_2017/L7_grad_descent.pdf
• Boyd’s Optimization book: https://web.stanford.edu/~boyd/cvxbook/
• Simple Optimization: https://www.neuraldesigner.com/blog/5_algorithms_to_train_a_neural_network
• Matlab’s Optimization: https://www.mathworks.com/help/optim/ug/equation-solving-algorithms.html#f51887
• LM Optimizer: https://www.cs.nyu.edu/~roweis/notes/lm.pdf
• Dogleg Optimizer: http://ceres-solver.org/nnls_solving.html
• COLAMD: https://www.mathworks.com/help/matlab/ref/colamd.html
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https://web.stanford.edu/%7Eboyd/cvxbook/
https://www.neuraldesigner.com/blog/5_algorithms_to_train_a_neural_network
https://www.mathworks.com/help/optim/ug/equation-solving-algorithms.html#f51887
https://www.cs.nyu.edu/%7Eroweis/notes/lm.pdf
http://ceres-solver.org/nnls_solving.html
https://www.mathworks.com/help/matlab/ref/colamd.html
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